8 research outputs found

    Capturing Topology in Graph Pattern Matching

    Get PDF
    Graph pattern matching is often defined in terms of subgraph isomorphism, an NP-complete problem. To lower its complexity, various extensions of graph simulation have been considered instead. These extensions allow pattern matching to be conducted in cubic-time. However, they fall short of capturing the topology of data graphs, i.e., graphs may have a structure drastically different from pattern graphs they match, and the matches found are often too large to understand and analyze. To rectify these problems, this paper proposes a notion of strong simulation, a revision of graph simulation, for graph pattern matching. (1) We identify a set of criteria for preserving the topology of graphs matched. We show that strong simulation preserves the topology of data graphs and finds a bounded number of matches. (2) We show that strong simulation retains the same complexity as earlier extensions of simulation, by providing a cubic-time algorithm for computing strong simulation. (3) We present the locality property of strong simulation, which allows us to effectively conduct pattern matching on distributed graphs. (4) We experimentally verify the effectiveness and efficiency of these algorithms, using real-life data and synthetic data.Comment: VLDB201

    EMID: An Emotional Aligned Dataset in Audio-Visual Modality

    Full text link
    In this paper, we propose Emotionally paired Music and Image Dataset (EMID), a novel dataset designed for the emotional matching of music and images, to facilitate auditory-visual cross-modal tasks such as generation and retrieval. Unlike existing approaches that primarily focus on semantic correlations or roughly divided emotional relations, EMID emphasizes the significance of emotional consistency between music and images using an advanced 13-dimension emotional model. By incorporating emotional alignment into the dataset, it aims to establish pairs that closely align with human perceptual understanding, thereby raising the performance of auditory-visual cross-modal tasks. We also design a supplemental module named EMI-Adapter to optimize existing cross-modal alignment methods. To validate the effectiveness of the EMID, we conduct a psychological experiment, which has demonstrated that considering the emotional relationship between the two modalities effectively improves the accuracy of matching in abstract perspective. This research lays the foundation for future cross-modal research in domains such as psychotherapy and contributes to advancing the understanding and utilization of emotions in cross-modal alignment. The EMID dataset is available at https://github.com/ecnu-aigc/EMID

    CROWN: a service-oriented grid middleware system: experience and applications

    No full text
    Grid computing has emerged as a new paradigm of distributed computing technology on large-scale resource sharing and coordinated problem solving. Based on a proposed Web service-based grid architecture, we have designed a service grid middleware system called CROWN which aims to promote the utilization of valuable resources and cooperation of researchers nationwide and world-wide. To address the issues of CROWN resource management, we proposed some key technologies including trustworthy remote and hot service deployment, overlay-based distributed resource organization, resource scheduling and load balance, and federation-based virtual organization management. A status of the wide area CROWN testbed is also introduced in this paper. Three typical applications including AREM, MDP and gViz are deployed on the CROWN testbed. Experience of CROWN testbed deployment and application development shows that the middleware can support the typical scenarios such as computing-intensive applications and data-intensive applications etc

    CROWN: a service grid middleware with trust management mechanism

    No full text
    Based on a proposed Web service-based grid architecture, a service grid middleware system called CROWN is designed in this paper. As the two kernel points of the middleware, the overlay-based distributed grid resource management mechanism is proposed, and the policy-based distributed access control mechanism with the capability of automatic negotiation of the access control policy and trust management and negotiation is also discussed in this paper. Experience of CROWN testbed deployment and application development shows that the middleware can support the typical scenarios such as computing-intensive applications, data-intensive applications and mass information processing applications

    HyperMIP: hypervisor controlled mobile IP for virtual machine live migration across networks

    No full text
    Live migration provides transparent load-balancing and fault-tolerant mechanism for applications. When a Virtual Machine migrates among hosts residing in two networks, the network attachment point of the Virtual Machine is also changed, thus the Virtual Machine will suffer from IP mobility problem after migration. This paper proposes an approach called Hypervisor controlled Mobile IP to support live migration of Virtual Machine across networks, which enables virtual machine live migration over distributed computing resources. Since Hypervisor is capable of predicting exact time and destination host of Virtual Machine migration, our approach not only can improve migration performance but also reduce the network restoration latency. Some comprehensive experiments have been conducted and the results show that the HyperMIP brings negligible overhead to network performance of Virtual Machines. The network restoration time of HyperMIP supported migration is about only 3 second. HyperMIP is a promising essential component to provide reliability and fault tolerant for network application running in Virtual Machine
    corecore